Hydrido-Ditertiary Phosphine, -Arsine, and -Chiral Phosphine Complexes of Ruthenium(II)

B. R. JAMES and D. K. W. WANG

Department of Chemistry, University of British Columbia, Vancouver, Canada V6T 1W5

Received March 30, 1976

Introduction

We reported recently on the synthesis of ruthenium(II) chiral phosphine complexes, and their use as hydrogenation catalysts.¹ Of interest, the diop ligand gave a dimeric species $Ru_2Cl_4(diop)_3$ containing five-coordinate Ru(II) with a bridging diop ligand, instead of the expected $RuCl_2(diop)_2$ complex.

Bressan and Rigo² simultaneously reported on the synthesis of a corresponding compound Ru₂Cl₄-(dpb)₃ where dpb = $Ph_2P(CH_2)_4PPh_2$. Presumably diop and dpb with four carbon atoms between the P donors cannot give rise to the usual d^6 octahedral RuX₂(diphosphine)₂ because of steric problems. Extension of our work to synthesis of hydrido derivatives has led to isolation of five-coordinate [HRu(diop)₂]⁺Cl⁻, and a range of new *trans*-HRuCl-(diphosphine)₂ complexes and some arsine analogues.

Chatt and Hayter³ prepared *trans*-HRuCl(dpm)₂, dpm = Ph₂PCH₂PPh₂, by reaction of *cis*-RuCl₂(dpm)₂ with LiAlH₄, although *trans*-RuCl₂(dpe)₂ did not react to give a hydride. Our method involves a ligand exchange reaction with HRuCl(PPh₃)₃,⁴ and is similar to the method used^{1,2,5,6} to prepare various dichlororuthenium(II) phosphine complexes [such as RuCl₂-(diphosphine)₂, where diphosphine = dpm, dpe, dpp] from RuCl₂(PPh₃)₃.

The hydride complexes have been characterized by elemental analysis, i.r., and ¹H and ³¹P n.m.r. The recent report of another group⁶ which duplicated some of our published¹ and unpublished work prompts us to report our synthetic studies, while our work^{1,7} on the catalytic properties of the hydrides continues.

Experimental and Discussion

The HRuCl(chelate)₂ complexes were made by refluxing a hexane suspension of the N,N-dimethyl-

acetamide solvate,⁴ HRuCl(PPh₃)₃·DMA, with the chelating ligands under nitrogen. The trans-HRuCl- $[Ph_2P(CH_2)_nPPh_2]_2$ complexes, n = 2, 3, 4, were obtained as pure yellow compounds with typical Ru-H stretching frequencies (see Table). The metal-hydride ¹H n.m.r. spectra consist of a high-field 1:4:6:4:1 quintet pattern, consistent with coupling to four equivalent phosphorus atoms in trans-complexes, and the single peak in the proton-decoupled ³¹P n.m.r. spectra is similarly consistent with four equivalent, non-exchanging phosphorus nuclei. The significant differences in the phosphorus chemical shifts of the dpp and dpe complexes have been noted previously, for example, with the *trans*-RuCl₂(dpp)₂ and -RuCl₂-(dpe)₂ complexes.⁶ The HRuCl(dpb)₂ complex, which rapidly decomposes in CDCl₃ to form Ru₂Cl₄(dpb)₃, is clearly a trans-octahedral species and the steric restrictions of the dpb ligand cannot be as severe as in the dichloro complex. The hydridoacetate complexes $HRu(O_2CCH_3)(dpe)_2$ and $HRu(O_2CCH_3)(dpp)_2$ were recently mentioned,⁶ but their low solubility precluded n.m.r. studies.

Our most interesting finding comes from n.m.r. data on the yellow hydrido-diop complex which, although analyzing for HRuCl(diop)₂, is an ionic species containing five-coordinate Ru(II) with an associated chloride anion. The high-field ¹H n.m.r. shows seven equally-spaced bands with intensities roughly in the ratios 1:2:3:4:3:2:1, and is consistent with a trigonal-bipyramid cation in which the proton couples to two equivalent equatorial phosphorus nuclei (J_{PH} = 28.8 Hz) and to two equivalent axial phosphorus atoms ($J_{PH} = 14.2$ Hz). Such an assignment is supported by the proton-decoupled ³¹P n.m.r. spectrum which shows the expected symmetrical A_2B_2 pattern $[J_{PP} = 40 \text{ Hz}]$. Further support for unsaturated character comes from the reaction of the hydride, in the solid state or solution, with carbon monoxide (Ru:CO = 1:1) to give [HRu(CO)- $(diop)_2$ ⁺Cl⁻. The corresponding complex containing the ligand, Et₂PCH₂CH₂PEt₂, has been reported by Mays and coworkers.⁸ The ionic hydrides were found to be conducting in nitromethane.

The yellow ditertiary arsine complex HRuCl-[Ph₂As(CH₂)₂AsPh₂]₂ is likely to have a *trans*configuration. Of interest, the Ph₂AsCH₂AsPh₂ ligand, and ethylenediamine, replace only one triphenylphosphine from the HRuCl(PPh₃)₃ complex, and the ¹H n.m.r. triplets [J_{PH} ~ 25 Hz] indicate *cis*-phosphines in *trans*-HRuCl(PPh₃)₂(chelate) complexes.⁹ Wilkinson's group⁹ have similarly synthesized a *trans*-HRuCl(PPh₃)₂(bipyridine) complex.

Of all the hydrides studied, only the [HRu- $(diop)_2$]⁺Cl⁻ complex is effective in solution for

Complex	I.R., cm ⁻¹ ν (Ru-H)	'H N.M.R. ^b		³¹ P N.M.R. ^f
		$\tau(Ru-H)$	J _{PH} (cis)	(ppm)
HRuCl(dpb) ₂	2030	28.8 (quintet) ^c	21.2 Hz ^c	
HRuCl(dpp) ₂	2000	27.95 (quintet)	19.5 Hz	15.59 (singlet)
HRuCl(dpe) ₂	2060	29.24 (quintet)	20.0 Hz	60.8 (singlet)
$[HRu(diop)_2]^+CI^-$	2010	28.7 (septet)	28.8 Hz ^d 14.2 Hz ^e	1.0, 19.54 (triplets) $(J_{PP} = 40 \text{ Hz})$
HRuCl[Ph2As(CH2)2AsPh2]	1960	31.32 (singlet)	_	-
HRuCl(PPh ₃) ₂ (Ph ₂ AsCH ₂ AsPh ₂)	1960	26.00 (triplet)	23.0 Hz	_
HRuCl(PPh ₃) ₂ (NH ₂ CH ₂ CH ₂ NH ₂)	1985	28.22 (triplet)	26.0 Hz	

TABLE. N.M.R. and I.R. Data for the Ruthenium(II) Hydride Complexes.^a

^a All the complexes gave microanalytical data in excellent agreement with theory. ^c In $C_6 D_6$ at 30 °C. ^d Coupling to equatorial P. ^e Coupling to axial P.

^b In CDCl₃ at 30 °C unless stated otherwise. ^f In CDCl₃, relative to 85% aq. H_3PO_4 .

catalytic hydrogenation of olefins under mild conditions, likely because the complex is coordinatively unsaturated. The hydride is probably the active catalyst in the previously reported asymmetric hydrogenations using the $Ru_2Cl_4(diop)_3$ complex,¹ and similar high optical purities have been obtained using the hydride under corresponding conditions.

Acknowledgements

We thank the NRC for financial support, and Johnson, Matthey Ltd. for the loan of ruthenium.

References

- 1 B. R. James, D. K. W. Wang, and R. F. Voigt, Chem. Comm., 575 (1975).
- 2 M. Bressan and P. Rigo, Inorg. Chem., 14, 2286 (1975).
- 3 J. Chatt and R. G. Hayter, J. Chem. Soc., 2605 (1961).
- 4 B. R. James and L. D. Markham, J. Catalysis, 27, 442 (1972).
- 5 P. W. Armit and T. A. Stephenson, J. Organometal. Chem., 57, C80 (1973).
- 6 R. Mason, D. W. Meek, and G. R. Scollary, *Inorg. Chim.* Acta, 16, L11 (1976).
- 7 B. R. James, L. D. Markham, and D. K. W. Wang, Chem. Comm., 439 (1974).
- 8 G. M. Bancroft, M. J. Mays, B. E. Prater, and F. P. Stefanini, J. Chem. Soc. A, 2146 (1970).
- 9 P. S. Hallman, B. R. McGarvey, and G. Wilkinson, J. Chem. Soc. A, 3143 (1968).