Hydrido-Ditertiary Phosphine, Asine, and Chiral Phythenic Complexes C

Department of Chemistry, University of British Columbia,

Department of Chemistry, U Vancouver, Canada V6T 1W5
Received March 30, 1976

Introduction

We reported recently on the synthesis of rutheniwe reported recently on the synthesis of ruthenium(II) chiral phosphine complexes, and their use as hydrogenation catalysts.¹ Of interest, the diop ligand gave a dimeric species $Ru_2Cl_4(\text{diop})_3$ containing five-coordinate Ru(II) with a bridging diop ligand, instead of the expected $RuCl₂(diop)₂$ complex.

 \mathbf{H} and \mathbf{H} _o−ċ **CH₃** 0-C-CH₋₁

Bressan and Rigo' simultaneously reported on the Bressan and Rigo² simultaneously reported on the synthesis of a corresponding compound Ru_2Cl_4 . $(dpb)_3$ where dpb = Ph₂P(CH₂)₄PPh₂. Presumably diop and dpb with four carbon atoms between the P donors cannot give rise to the usual d^6 octahedral RuX_2 (diphosphine)₂ because of steric problems. Extension of our work to synthesis of hydrido derivatives has led to isolation of five-coordinate $[HRu(\text{diop})_2]$ ⁺Cl⁻, and a range of new trans-HRuCl-(diphosphine) $_2$ complexes and some arsine analogues.

Chatt and Hayter³ prepared trans-HRuCl(dpm)₂, $\text{dpm} = \text{Ph}_2 \text{PCH}_2 \text{PPh}_2$, by reaction of cis-RuCl₂(dpm)₂ with LiAlH₄, although trans-RuCl₂(dpe)₂ did not react to give a hydride. Our method involves a ligand exchange reaction with HRuCl(PPh₃)₃,⁴ and is similar to the method used^{1,2,5,6} to prepare various dichlororuthenium(II) phosphine complexes [such as $RuCl₂$. (diphosphine)₂, where diphosphine = dpm, dpe, dpp] from $RuCl₂(PPh₃)₃$. m KuCl₂(PPh₃)₃.

I'me hydride complexes have been characterized by elemental analysis, i.r., and H and ${}^{31}P$ n.m.r. The recent report of another group⁶ which duplicated some of our published¹ and unpublished work prompts us to report our synthetic studies, while our work^{1,7} on the catalytic properties of the hydrides continues.

Experimental and Discussion

a *trans*-HRuCl(PPh₃)₂(bipyridine) complexes were made by a trans-HRuCl(PPh₃)₂(bipyridine) complexes were made by Of all the hydrides studied, only the [HRu-

acetamide solvate, $HRuCl(PPh_3)_3 \cdot DMA$, with the chelating ligands under nitrogen. The trans-HRuCl- $[Ph_2P(CH_2)_nPPh_2]_2$ complexes, n = 2, 3, 4, were obtained as pure yellow compounds with typical Ru-H stretching frequencies (see Table). The metal-hydride ¹H n.m.r. spectra consist of a high-field $1:4:6:4:1$ quintet pattern, consistent with coupling to four equivalent phosphorus atoms in trans-complexes, and the single peak in the proton-decoupled $\frac{31}{P}$ n.m.r. spectra is similarly consistent with four equivalent, non-exchanging phosphorus nuclei. The significant differences in the phosphorus chemical shifts of the dpp and dpe complexes have been noted previously, for example, with the *trans-RuCl* (dpp) , and -RuCl₂- $(dpe)_2$ complexes.⁶ The HRuCl $(dpb)_2$ complex, which rapidly decomposes in $CDCl₃$ to form $Ru₂Cl₄(dpb)₃$, is clearly a *trans*-octahedral species and the steric restrictions of the dpb ligand cannot be as severe as in the dichloro complex. The hydrido-
acetate complexes $HRu(O_2CCH_3)(dpe)$, and $HRu(O₂CCH₃)(dpe)₂$ $HRu(O_2CCH_3)(dpp)$, were recently mentioned,⁶ but their low solubility precluded n.m.r. studies.

acetamide solvate,4 HRuCl(PPh3)3*DMA, with the

to be conducting in nitromethane. Our most interesting finding comes from $n.m.r.$ data on the yellow hydrido-diop complex which, although analyzing for $HRuCl(\text{d}iop)_2$, is an ionic species containing five-coordinate $Ru(II)$ with an associated chloride anion. The high-field ¹H n.m.r. shows seven equally-spaced bands with intensities roughly in the ratios $1:2:3:4:3:2:1$, and is consistent with a trigonal-bipyramid cation in which the proton couples to two equivalent equatorial phosphorus nuclei (J_{PH} = 28.8 Hz) and to two equivalent axial phosphorus atoms (J_{PH} = 14.2 Hz). Such an assignment is supported by the proton-decoupled ${}^{31}P$ n.m.r. spectrum which shows the expected symmetrical A_2B_2 pattern $[J_{PP} = 40 \text{ Hz}]$. Further support for unsaturated character comes from the reaction of the hydride, in the solid state or solution, with carbon monoxide (Ru:CO = 1:1) to give $[HRu(CO)$ - $(\text{diop})_2$ ⁺Cl⁻. The corresponding complex containing the ligand, $Et_2PCH_2CH_2PEt_2$, has been reported by Mays and coworkers.⁸ The ionic hydrides were found

The yellow ditertiary arsine complex HRuCl- $[Ph₂As(CH₂)₂AsPh₂]$ ₂ is likely to have a *trans*configuration. Of interest, the $Ph_2AsCH_2AsPh_2$ ligand, and ethylenediamine, replace only one triphenylphosphine from the $HRuCl(PPh_3)_3$ complex, and the ¹H n.m.r. triplets $[J_{PH} \sim 25 \text{ Hz}]$ indicate cis -phosphines in trans-HRuCl(PPh₃)₂(chelate) complexes.⁹ Wilkinson's group⁹ have similarly synthesized

The HRuCl(chelate)₂ complexes were made by \qquad Of all the hydrides studied, only the [HRu-
refluxing a hexane suspension of the N,N-dimethyl- (dlop_2) ⁺Cl⁻ complex is effective in solution for

Complex	$I.R., cm^{-1}$ ν (Ru-H)	¹ H N.M.R. ^b		31 P N.M.R. ^I
		$\tau(Ru-H)$	$J_{PH}(cis)$	(ppm)
$HRuCl(dpb)$,	2030	28.8 $\left($ quintet $\right)^c$	21.2 Hz^C	
$HRuCl(dpp)$,	2000	27.95 (quintet)	19.5 Hz	15.59 (singlet)
$HRuCl(dpe)$,	2060	29.24 (quintet)	20.0 Hz	60.8 (singlet)
$[HRu(diop),]^{\dagger}CI$	2010	28.7 (septet)	28.8 Hz ^d 14.2 Hze	1.0, 19.54 (triplets) $(J_{PP} = 40 \text{ Hz})$
$HRuCl[Ph2As(CH2)2 AsPh2]$	1960	31.32 (singlet)		--
$HRuCl(PPh_1), (Ph, AsCH, AsPh_2)$	1960	26.00 (triplet)	23.0 Hz	
$HRuCl(PPh_3), (NH, CH, CH, NH_2)$	1985	28.22 (triplet)	26.0 Hz	

TABLE. N.M.R. and I.R. Data for the Ruthenium(II) Hydride Complexes.³

 $\frac{a_{A11}}{b_{A21}}$ \rm^c In C₆D₆ at 30 °C. Coulino test and Coulino test $\text{Coulino test$

 $\frac{b}{n}$ In CDCl, at 30 °C unless stated otherwise.

catalytic hydrogenation of olefins under mild condi-
References tions, likely because the complex is coordinatively unsaturated. The hydride is probably the active catalyst in the previously reported asymmetric hydrogenations using the $Ru_2Cl_4(diop)_3$ complex,¹ and similar high optical purities have been obtained using the hydride under corresponding conditions.

Acknowledgements

We thank the NRC for financial support, and Johnson, Matthey Ltd. for the loan of ruthenium.

- B. R. James, D. K. W. Wang, and R. F. Voigt, *Chem.* Comm., 575 (1975).
- \mathfrak{p} $2 \text{ m. Diosșaŭ alu I. Rigo, } morg. Chem., 17, 2200 (177)$ M. Bressan and P. Rigo, Inorg. *Chem., 14, 2286 (1975).*
- 4 B. R. James and L. D. Markham, J. *Cafalysis, 27, 442*
- *(1972).*
- P. W. Armit and T. A. Stephenson, *J. Organometal. Chem., 57, C80 (1973).*
- R. Mason, D. W. Meek, and G. R. Scollary, Inorg. *Chim. Acta, 16,* Lll (1976). $B \cup B$. James, L. D. M. Ham, and D. K. W. Wang, Cham
- C_1 A 30 (1974). Comm., 439 (1974).
8 G. M. Bancroft, M. J. Mays, B. E. Prater, and F. P.
- Stefanini, *J. Chem. Sot. A, 2146 (1970).*
- P. S. Hallman, B. R. McGarvey, and G. Wilkinson, *J. Chem. Sot. A,* 3143 (1968).